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decomposition (LTD) and partial least squares (PLS) 
analysis * 
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Abstract: The problem of relating multivariate time-series which is common in drug development is considered. The 
mathematical and statistical problems involve relating two three-way tables. These tables have objects and time-points in 
common while the variables to be related are unique for each table. A modification is presented of the linear three-way 
decomposition (LTD) algorithm which directly incorporates the information that both objects and time-points are 
common to the two tables. A comparison is made with partial least squares (PLS) analysis both at the theoretical level and 
in their application to three sets of real data. Limitations of LTD are discussed, in particular the constraint imposed by the 
trilinearity requirement, and areas for future development are proposed. 
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Introduction 

Analysis of multivariate time-series can be 
carried out by relating two three-way tables in 
which objects and time-points are common to 
the two tables while the variables to be related 
are unique to each table (Fig. 1). This kind of 
problem is common in many areas of research, 
notably in drug development-related sciences 
such as analytical chemistry and pharmacol- 
ogy. The examples in the following text are 
taken from the author’s work in pharmacology. 

A major line of development in chemo- 
metrics is that of analysis of multi-way (-mode) 
tables (arrays, matrices) (Fig. 1). These devel- 
opments, and applications in the psychometrics 

t:fl “:Y=J 

Wl 
cl1 

Figure 1 
Illustration of the tables (arrays) used in LTD. Notice in 
particular that t and u are in modes common to x and y and 
that the same holds true for w2 and 9s while w, is in a mode 
unique to x and 4, is in a mode unique to y. 

literature, are reviewed in considerable detail 
elsewhere [l]. The partial least squares (PLS) 
approach is the method with the widest general 
application [2, 31. Recently, an alternative 
algorithm was suggested for linear three-way 
decomposition (LTD) of two related three-way 
tables [4]. This method is based on tensor 
algebra, which is relatively simple to under- 
stand and aids understanding how the method 
works. Wold (personal communication, lec- 
tures given at MULDAST 1988) uses a scheme 
of criss-cross projections of matrices onto 
vectors to explain the way PLS works. This 
scheme in combination with tensor algebra can 
be used to modify LTD in a way suggested 
below. The impetus for this development is 
that models in which several modes are in 
common between the matrices to be related 
(say x and y) are frequently encountered. An 
example is when a number of objects (mode 1) 
are observed at a number of time points (mode 
2) and a number of variables measured at each 
time point (mode 3) are related to other 
variables measured at the same time points 
(mode 4). Thus x consists of modes 1, 2 and 3 
and y is built up from modes 1, 2 and 4. 

The aim of the present paper is to compare 
methods in a natural way that incorporates the 
information contained in the fact that both 

*Presented at the Symposium on “Chemometrics in Pharmaceutical and Biomedical Analysis”, November 1990, 
Stockholm. Sweden. 
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objects and time-points are common to two 
related tables. One method is a modification of 
the LTD method previously developed for the 
situation in which two modes are unique to 
each table [4]. The modified LTD method will 
be referred to as LTD2 (2 modes in common 
between x and y) and the previous mode1 as 
LTDl (1 mode common to x and y). The other 
method is PLS [2, 31. 

Methods 

Mathematical model 
The detailed description of the LTD2 mode1 

and algorithm is given in Appendix A and PLS 
is described in Appendix B. In short, LTD2 
uses data organised into two three-way tables 
(three-array) in which objects (patients, exper- 
imental units) and time-points are in common 
for the two tables. The result of the analysis is a 
number for each object describing how much 
“effect” there is on the object compared to the 
overall mean. For each time-point a number is 
given as a measure (weight) of how much effect 
there is at that time-point. The value of the 
weight varies in the interval I-1.0; 1.01 in 
which extreme values indicate a strong influ- 
ence and values close to 0.0 indicate no 
influence. Similarly a weight is given for each 
variable to describe the influence of that 
variable. To give an example from the Results 
section on coagulation data: the large negative 
weight of coagulation factor X and a large 
positive weight on day 2 for the predictors and 
the large negative weight for the prothrombin 
assay data and large positive weights on days 4 
and 5 should be interpreted in the following 
way. Low factor X values on day 2 predict low 
prothrombin levels on days 4 and 5. 

Data 
Three sets of real data were used in this 

initial test of the algorithm. In two of them 
there are three predictor variables, namely 
dopamine, DOPAC and SHIAA and one 
predicted variable, HVA. All variables were 
measured in samples taken from the extra- 
cellular fluid of the rat brain as microdialysis 
samples. In the first set of data, six samples 
were taken in 20 min fractions after injection of 
amphetamine 5 mg kg-’ (n = 5) or saline (n = 
5). In the second data set 10 samples of the 
same kind were taken after administration of 
a-methyl-p-tyrosine (olMPT) 50 mg kg-’ (n = 
7), 100 mg kg-’ (n = 7), 200 mg kg-’ (n = 6) 

or saline (n = 6). The third data set, which was 
collected from patients treated with coumarin 
derivatives after venous thrombosis, consisted 
of measurements of three coagulation factors 
(II, VII and X) and five commercially available 
prothrombin assays (abbreviated SPA, NYC, 
SIA, TPC and TPR). Samples were collected 
before treatment and 2, 4 and 5 days after the 
start of the treatment. The number of patients 
was 16. 

Amphetamine data have the x-array as a 
(10 x 3 X 6) array and y is (10 x 1 x 6), 
olMPT data are x (26 x 3 x IO) and y (26 x 
1 x 10) and finally coagulation data x (16 x 
3 X 4) and y (16 x 5 x 4). All data were 
normalized to zero mean and unit variance 
with respect to the variables. Cross-validation 
was performed in four rounds (see Stlhle, 1989 
[4] for details). All data sets contained a small 
number of missing values. 

Results 

General observations 
The LTD2-algorithm was slow to converge 

but did so reliably during cross-validation for 
all significant components (the significance was 
judged by comparison with unfolded PLS- 
models). A problem encountered was that the 
sign of parameters may switch from one iter- 
ation to the next for which allowance has to be 
made. All data were close to being trilinear. 
This follows from the finding that there was 
little improvement in the cross-validation esti- 
mate of the prediction error obtained by using 
a PLS-model (unfolded). 

Amphetamine data 
A scatter plot of the first two components is 

shown in Fig. 2. From this graph it is clear that 
amphetamine-treated rats differ from the 
saline-treated controls. A plot of the weights 
(Fig. 2b and c) of the first component shows that 
increased levels of dopamine and decreased 
levels of DOPAC are strongly correlated to 
reduced levels of HVA. SHIAA does not have 
this effect. The better predictor is DOPAC and 
all time-points are informative. 

aMPT data 
A scatter plot of the first two components is 

shown in Fig. 3(a). On the first component 
there is a clear separation of saline-treated 
controls from aMPT-treated animals. The 
weights (Fig. 3b) show that a reduction of 
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Figure 2 
Bivariate plots of the first two dimensions of t, (0, saline 
treated controls; 0, amphetamine treated rats), w, and w2 
of the amphetamine data. 

dopamine and DOPAC is accompanied by a 
reduction of HVA while SHIAA did not 
influence HVA. The influence of dopamine 
and DOPAC on HVA develops during the first 
four (Fig. 3~). A second component was also 
significant and shows the influence of SHIAA 
and DOPAC on HVA during the first hour in 
particular (Fig. 3b and c). 

Coagulation data 
Coagulation data was the only data set 

investigated with three-way tables in both x 
and y. Only one component was found to be 
significant by cross-validation data. The scores 
on the first two components are shown in Fig. 
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Figure 3 
Bivariate plots of the first two dimensions of t, (0, control 
rats; 0, 50 mg kg-‘, +-lo0 mg kg-‘, A-200 mg kg-‘), w, 
and wz of the a-methyl-p-tyrosine data. 

4(a). The weights (Fig. 4b,c) show that factor X 
was most strongly related to the prothrombin 
assay data (Fig. 4d,e) and that early changes in 
coagulation factors were related to changes in 
prothrombin levels on the fourth and fifth days 
after the start of the treatment. Interestingly, 
one of the prothrombin assays, TPC, was not 
as strongly related to the coagulation factors as 
the other assays. 

Comparison with bilinear and three-way PLS- 
models 

The comparison between PLS and LTD2 
was made on a cross-validation prediction 
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Bivariate plots of the first two dimensions oft , , w,, w2, q, and q2 of the coagulation factors vs prothrombin assay data. 

error basis (Table 1). A direct comparison 
between three different PLS-models and LTD2 
was made. It should be noted that the three- 
way PLS model with one-component PCA 
decomposition of the weight matrix (abbrevi- 
ated 3PLSlc) is identical with LTDl as shown 
in Appendix B. It is noteworthy that the 
differences obtained are not large except that 
the 3PLS2c model (as 3PLSlc except that two 
PCA components are calculated from the 
weight matrix) of the coagulation data is 
superior with respect to the second component 
indicating that this data set is not well 
approximated by a trilinear model. 

Table 1 
Comparison between cross-validation standard deviation 
ratio for models with one or two components using LTD2, 
bilinear PLS (PLS), rank 1 (3PLSlc) and rank 2 (3PLS2c) 
decomposed weight table using multiway PLS 

LTD2 PLS 3PLSlc 3PLS2c 

Amphetamine 
1st camp 0.4620 0.4713 0.4624 0.4712 
2nd camp 0.7731 0.7896 0.7573 0.7909 
aMPT 
1st camp 0.6787 0.6940 0.6865 0.6935 
2nd camp 0.9304 0.9255 0.9363 0.9265 
Coagulation 
1st camp 0.7399 0.7263 0.7381 0.7320 
2nd camp 0.9964 0.9830 0.9818 0.9661 
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Discussion 

The main aim of the present work was to 
develop an algorithm which takes the con- 
straints inherent in multivariate time-series 
into account when the model parameters are 
calculated. Apparently LTD2 does this 
successfully as shown by the results presented. 
The more intruiging question is to what extent 
this approach is successful in handling real 
data. This prompted a comparison with PLS. 

Although computationally demanding, 
LTD2 produces results that easily lend them- 
selves to interpretations that can be stated in a 
few sentences. This is a consequence of the 
trilinearity of the models. The best of the 
present examples is probably the coagulation 
data set which show clearly that changes in all 
coagulation factors, but in particular that of 
factor X, predict reductions in prothrombin 
levels a few days later (Fig. 5a and b). This 

interpretation is supported by clinical data 
which show that the effect of coumarin-treat- 
ment is to stop synthesis of coagulation factors 
in the liver. Due to the half-life of the 
coagulation factors (i.e. factor II, 50 h; factor 
VII, 6 h; and factor X, 36 h), the decline in 
prothrombin-activity a few days after treat- 
ment is expected. 

Another advantage is that a constraint that is 
physically present in the data is, in a natural 
way, incorporated into the model. It would not 
be surprising if this property results in im- 
proved prediction properties compared to 
LTDl (3PLSlc). Table 1 is compatible with 
this conclusion although the improvement is 
small and confined to the first component. 
Reasons for this and the trilinearity constraint 
are discussed below. 

The main disadvantage of LTD2 is the risk 
of trying to model data that are not trilinear. 
The second component of the coagulation data 
may serve as an example. Interestingly, the 
bilinear model (PLS) was not better than the 
3PLS2c model which underlines the conclusion 
previously drawn that real data with physical 
constraints usually lie between trilinear and 
bilinear models [4]. 

It is also interesting to note that, despite 
considerable efforts to improve the PLS-algor- 
ithm in various ways such as linear constraints 
[3, 4, present model], non-linearity in the 
relation between x and y [5] or modification of 
the parameter estimation procedure (Stable; 
lecture given at Chemometrics 15-year anni- 
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Figure 5 
Bar graphs of the first dimension of w, (coagulation 
factors) and w2 (time points). For interpretations, see the 
text. 

versary at Holmsund 1989, to be published), 
only marginal improvements have been made. 
This observation suggests that the ordinary 
PLS algorithm [2] has inherent properties that 
make it suitable for an unusually large number 
of problems. Its only serious disadvantage is 
the interpretation or explanation of the data 
which may require the expertise of data 
analysts within applied sciences such as 
chemometrics to provide knowledge in matrix 
algebra. 

As a final comment, the author proposes the 
use of methods like those described in this text 
in the development of new drugs and other 
areas of pharmaceutical research. The methods 
are not difficult to use but users require 
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training in precisely the same way as those of 
any analytical technique and of pharmaco- 
logical model systems. In addition, the use of 
multivariate methods gives the user an indi- 
cation of the limitations of the experimental 
methods and this may prove to be invaluable. 
For example the author has observed the 
situation in which a year was spent in an 
attempt to optimize an HPLC method in a way 
which is easily demonstrated to be impossible 
to achieve. This is mentioned not to scare but 
to encourage! The present paper provides a 
way to avoid nasty pitfalls of this type. 
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Appendix A 

Mathematics 
All data will be considered as arrays with specified 

modes. Thus, a O-array has no mode and is the same as a 
scalar. A l-array has one mode which is specified by an 
integer and represents a vector. Matrices have two integer- 
specified modes and are 2-arrays. 

In addition to the usual summation formulae and matrix 
algebra the following operations are defined. 

(1) Expansion - symbolized by @ which is the same as 
Kronecker product in the case of two l-arrays. Thus the 
expansion of the l-arrays x and y with modes (1) and (3), 
respectively yields a 2-array z of mode (1, 3). This is 
written z = x @ y (Fig. Al). It follows that arrays with 
modes in common cannot be expanded. 

(2) Contraction - symbolized by 0 is summation of 
paired products of elements of modes in common between 
the arrays contracted. This is the same as scalar product in 
the case of two l-arrays. Thus, the contraction of a 3-array 
x with mode (1, 3, 4) with a l-array y of mode (3) yields a 
2-array z of mode (1, 4). This is written as z = x 0 y (Fig. 
Al). Orthogonality is defined as the case when the 
contraction of two arrays of identical mode is zero. The 
norm of an array, written [!_~[l, is the contraction of the array 
with itself, thus llxll = x 0 X. 

- - L 
Figure Al 
Illustration of the contraction and expansion operations. 

The modes of various arrays are always implicit. The 
reason for introducing this notation is to avoid excessive 
use of indices and various complicated transposition 
procedures in connection with array multiplication. It 
should be noted that the notation is not sufficient to cover 
matrix algebra in general; the purpose is to simplify and 
make transparent the decomposition of 3-arrays into l- 
arrays. This is possible in the present context only because 
modes are distinct and correspond to a physical reality. 

The following arithmetic properties are of importance: 
let x and y be arrays with all modes in common, 

xoy=yox. (I) 

Let x and y have no modes in common. Also let z have 
modes in common with both x and y, 

x@y=y@x 

z 0 (X By) = (2 0 x) 0 y. 

Notation and models 

(2) 

(3) 

The predictor array is denoted x and the predicted array 
is denoted y. The basic idea is to extend the way modes are 
distinguished in PLS. In PLS a distinction is made between 
objects (common to x and y) and variables (unique to x and 
unique to y). In LTD2 it is necessary to distinguish among 
modes in common between x and y, modes unique to x and 
modes unique to y. In the following the modes have the 
following meaning: mode 1 = objects; mode 2 = variables 
in X; mode 3 = time; mode 4 = variables in y. In parallel 
with PLS notation there are the following arrays to model/ 
predict x and y. 

t, Is the score l-array of mode (1) for x. Mode (1) is 
common to x and y and is objects (rats, patients, drugs, 
etc.). 

The l-array ui has the same definition for y as t, has for 
x. The mode of t, and u, is the same. 

The l-array w2 and ws are the weight vectors of modes 
(2) and (3) for the predictor block x. Two w-arrays are 
needed, one with mode in common with y (time) and one 
unique to x (variables). 

The corresponding two weight l-arrays for y are denoted 
q4 and q3, one of which has mode in common with x (93) 
and one has mode unique to y (q4). 

The 2-array of loadings pz3 is used to calculate residuals 
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of x and is merely a means to obtain orthogonality. It has 
mode (2, 3). 

The scalar d is the regression coefficient between x and 

Y. 
For the purpose of writing the iterative algorithm it is 

necessary to distinguish between arrays extracted in the 
previous iteration from new arrays by underlining the 
former. 

Properties designed in LTD2 
A number of properties useful in data analysis can be 

found in PLS, in particular orthogonality between certain 
vectors [6]. The most important is orthogonality between t- 
vectors of successive components which is also designed 
into LTDZ. 

L TD2 algorithm 
0. 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 

Take starting guesses of t,, u,, q3 and w3 

IIw311 = l 
Ml = 1 

94 = Y 0 (t, @ %m @ 41 
11~411 = 1 

Check for convergence of the w- and u-arrays. If . not, go to step 1 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 

d = t, 0 u,/llt,ll 
e = x - t, 8 pz3 
x=e 

f= Y - d$t, @ w @ 4,) 
If you want the next component go to 1 

The main difference compared to PLS and LTDl 
algorithm is that the constraint is made from the other 
block. 
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Appendix B 

In this appendix the steps in the PLS algorithm and the 
LTDl algorithm of importance for the proof given in 
appendix C are reviewed. Complete descriptions of the 
algorithms can be found elsewhere [2-41. The score and 
weight vectors are identical in notation with LTDZ. 
However, the algorithms are here given as summation 
formulae and therefore indices corresponding to the modes 
are used. Hence, the indices are: mode (1) = i, mode 
(2) = j or J (unfolded), mode (3) = k (now unique to x), 
mode (4) = 1 or L (unfolded), mode (5) = m (a new mode 
unique to y). 

0. Guess ui 
1. w, = ~X&;&f 

2. zw: =’ 1 r 

3. f = Xxxilw,lzw: 

4. q/. =‘%,dJ% 
5. Fq:=‘I ’ 

6. u, = Q,,q,&t 
7. Repeat steps;-6 until convergence of u 

In the case of three-way PLS the vector w may be folded 
(Fig. A2) to make up a matrix W with rows corresponding 
to time-points and columns corresponding to variables (in 
the present case). The matrix W can then be decomposed 
by principal components analysis (PCA) into a number, of 
components (determined by cross-validation on Y [4]). The 
principal component model of W is then unfolded to make 
up the vector w in step 3. With a one-component PCA 
model of W the complete PLS model is referred to as 
3PLSlc. with a two-component PCA model of W it is 
3PLS2c, etc. Formally the algorithm is written (with score 
r and weights P of W): 

2a. Guess r, 

2b. irk = IW,kr, 
I 

2c. z?r; = I 

2d. :, = CW,*n,, 
k 

60-60 60-80 80-100 100-120 
. . . . . . . . . . . . . . . . 

/=‘FOLD BACK a=oQ 

Figure A2 
Illustration of the folding and unfolding of x and w in multiway PLS. 
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2e. Repeat steps 2b-d until convergence, unfold W,, to Example of a proof: 
the vector with elements w,. The same procedure can be At convergence of PLS we have (with W and Q 
used on 4 in steps 4a-e exactly corresponding to 2a-e. unfolded): 

The LTD algorithm decomposes the three-way matrix x 
into three vectors t, (same as in PLS), wz and w? (the 
product w1 8 rva yields a matrix the elements of which are 
the same as the elements in the vector w folded to W in 
PLS). Indices are used as described above. 

t, = Bx,,w, 
J 

q/_ = CY,,.l, x ~~Y<I.V% 

Fq;. =‘I 

Y/. = T/T,,,. 

1. Make starting guesses for u,, w2, w3, q4 and 9s 
2. w, = XSx,j~uiw~ 

3. cw; =’ ; 

4. & = CCX,,&,M’, 

5. :w; =’ r 

6. I, = XzX,,~W,W, 

7. = ‘XkEY GY,,, 4, r,,,, I 171 
8. y; = 1 

9. q,,, = ~~Y&&l/ 

10. zq;,,= 1 
,>1 

11. u, = T?Yt ,,,I q/q,,, 

12. Repeat steps 2-l 1 until convergence. 

Appendix C 

where there is no need to use q from the previous iteration. 
Because w = w2 @ w7 in PLS the steps used to calculate 

t, in PLS and LTDl are equal. More precisely, let x,,~ = xJ 
and w,wk = w,, then it is immediately seen that the t, are 
identical. If it is assumed that 7, = q, it is easy to see that 

q,n = P,?Z and vice versa. It remains only to show that this 
assumption is true to obtain the complete proof since the 
calculation of the u and w vectors are isomorphic to the 
calculation of t and q. But, at convergence the use of q, 
from the previous iteration as a starting guess in step 4a 
leads to convergence in one iteration of the PCA decom- 
position of Q. This implies that the assumption is true and 
the proof is complete.0 

It is proposed that LTDI is identical with PLS (more Taking into account the property that in PLS t, and U, 
exactly 3PLSlc) with a one-dimensional principal com- have maximum covariance due to the choice of w, 161 an 
ponents (singular value) decomposition of W in the informative corollary is obtained, namely that 3PLSlc and 
algorithm (not afterwards). It will suffice to show that at LTDl calculates t, and U, such that they have the 
convergence the calculation of f,, ul, q4 and q5 (modelled maximum co-variance subject to the condition that w, 
as the matrix Q by q4 @ q5 in LTDI) are the same in the folded, W, is the product of two vectors, i.e. W = w2 @ w3. 
two algorithms since calculations of U, is the same as for I, The way LTDl works makes this obvious since the 
and we will take wz and We or W = w2 @ w3 (unfolded to calculation of w2 is done as a weighted contraction where 
the vector w) as the starting point. the weights are w? and vice versu. 

Proportionality (cx) is used to simplify the expressions. In 
LTDl we have 

t, = CZX,,~W,W, 
IA 

q/ Cc ~~Y,,,&l,,, 
I ,,1 

74; = 1 


